Филиал муниципального общеобразовательного учреждения Романовская средняя общеобразовательная школа р.п. Романовка Романовского района Саратовской области имени полного кавалера орденов Славы И.В. Серещенко в с. Большой Карай Центр образования естественнонаучного и технологического профилей «Точка роста»

точка Роста

ПРИНЯТО на заседании педагогического

совета школы (Протокол от3<u>0 0</u>8 2024 г. № <u>1</u>) УТВЕРЖДЕНО СПЕТЕРОМАНО ОТВЕРЖДЕНО СПЕТЕРОМАНО ОТВЕРЖАТИ В СЕРЕЩЕНИИ В СЕРЕМЕНИИ В СЕРЕМЕН

Дополнительная общеобразовательная общеразвивающая программа «РОБОТОТЕХНИКА»

Применяется метод наставничества

Направленность: техническая Возрастучащихся: 7-15 лет Срок реализации программы: 1 год

Автор-составитель:

Давыдов Вячеслав Михайлович,

педагог дополнительного образования

. Комплекс основных характеристик дополнительной общеобразовательной общеразвивающей программы

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» имеет **техническую направленность**, связанную с привлечением младшего и среднего школьного возраста к современным технологиям программирования, конструирования и использования роботизированных устройств.

Уровень освоения программы: базовый.

Робототехника - увлекательное занятие в любом возрасте, она доступна, как младшим школьникам, так и старшеклассникам. Конструирование самодельного робота - это процесс познания во многих областях, таких как: электроника, физика, математика, механика, программирование, инженерия. Возможность прикоснуться к неизведанному миру роботов для современного ребенка является очень мощным стимулом к изучению чего-то нового, преодолению инстинкта потребителя и формированию стремления к самостоятельному творчеству.

Актуальность программы обусловлена необходимостью вернуть интерес детей и подростков к научно-техническому творчеству, так как в России наблюдается острая нехватка инженерных кадров. Развитие робототехники обусловлено постоянно растущим спросом на специалистов в изучаемой сфере, а также в различных сферах с технической направленностью. Занятия по программе «Робототехника» позволяют заложить фундамент для подготовки будущих специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике, а полученные на занятиях знания становятся для учащихся необходимой теоретической и практической основой их дальнейшего участия в техническом творчестве и выборе будущей профессии.

Программа является модифицированной, поскольку в её основу положены следующие рабочие программы педагогов дополнительного образования:

- Дополнительная общеобразовательная общеразвивающая программа «Робототехника», составитель Мурзабаев Е.Б. (МБОУДОД Сунтарский Центр детского творчества им. Н.М. Родионовой);
- Дополнительная общеобразовательная общеразвивающая программа «Робототехника», составитель Чигвинцева Г.Г. (Школа имени братьев Буби, Агрызский район, Татарстан).

Отличительной особенностью данной программы является интеграция проверенных методик освоения базовых понятий робототехники с помощью конструкторов LEGO.

Настоящий курс предлагает использование конструктора нового поколения: Education SPIKE Prime. Лего как инструмента для обучения детей конструированию и моделированию. Работа с образовательными конструкторами LEGO позволяет учащимся в форме познавательной игры познавать многие важные идеи и развивать необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания - от теории механики до психологии, что является вполне естественным.

В программу включена **методология наставничества** в форме **«ученик - ученик».** Обучающиеся старшего возраста, имеющие больший запас знаний и умений могут оказать помощь в получении теоретических знаний и практических умений в освоении робототехники и информационных технологий своим младшим товарищам. Наставничество в форме **«педагог - ученик»**, предполагает выявление и развитие креативных способностей у обучающихся в конструировании новых моделей для выполнения определенных задач и их программирование. Задача наставника заключается в подготовке обучающихся для участия в конкурсах различного уровня для выявления степени их подготовки. На первых занятиях по реализации программы предполагается формирование групп «наставник-наставляемые». Работа по наставничеству проводится в течение всего учебного периода и завершается подведением итогов.

Обучение по программе «Робототехника» способствует формированию функциональной грамотности – компьютерной грамотности. Задача педагога - создать творческую атмосферу, помочь обучающимся самореализоваться, способствовать

формированию самостоятельности, творческого потенциала, коммуникабельности через выполнение практических работ. Развивать способности учащихся и способствовать формированию кадрового резерва IT-специалистов, с помощью изучения прикладных программ и знакомства с профессиями.

Формирование функциональной компьютерной грамотности происходит через:

- интерактивные формы обучения;
- выполнение практических работ;
- планирование собственных исследований или экспериментов;
- формулирование выводов на основе проведенных экспериментов, практических работ.

Педагогическая целесообразность программы.

Программа знакомит учащихся с инновационными технологиями в области робототехники, помогает ребёнку адаптироваться в образовательной и социальной средах. Такую стратегию обучения и помогает реализовать образовательная среда Lego, которая учит самостоятельно мыслить, находить и решать проблемы, привлекая для этого знания из разных областей, уметь прогнозировать результаты и возможные последствия различных вариантов решения, что способствует повышению интереса к быстроразвивающейся науке робототехнике и выработке таких качеств характера как воля, терпение, настойчивость, самостоятельность и инициативность. Особенности реализации программы предполагают сочетание возможности индивидуальных творческих способностей формирование развития И умений взаимодействовать в коллективе посредствам работы в группе.

Адресат программы и возрастные особенности

Возраст детей, участвующих в реализации программы с 8 до 15 лет.

Младший школьный возраст (8-10 лет) - это не самый простой период в жизни ребенка. Идет активное развитие психики и личности. Дольше концентрируется внимание, увеличивается объем памяти. Это позитивный момент развития личности. Деятельность становится предметной. Теперь, кроме игры проступает второе важное направление — учеба и развитие.

Средний школьный возраст (11-15 лет) - переходный возраст от детства к юности, характеризующийся глубокой перестройкой организма. Дети откликаются на необычные, захватывающие дела и мероприятия, но быстрая переключаемость внимания не дает возможности сосредотачиваться долго на одном и том же деле. Однако, если создаются трудно преодолеваемые и нестандартные моменты, ребята занимаются работой с удовольствием и длительное время, поскольку им нравится решать проблемные ситуации, находить сходство и различие, определять причину и следствие.

Именно в возрасте 8-15 лет возрастает необходимость накапливать знания сразу во многих сферах и достигать самого высокого результата. Дети способны на общекультурном уровне выполнять предлагаемые задания по образцу и создавать свои простые программы.

Количество детей в группах:12-15 человек.

Срок реализации программы

Программа рассчитана на 1 год обучения.

Общее количество часов в год: 72 часа.

Режим занятий

Занятия проводятся 1 раз в неделю по 2 часа. Продолжительность занятия - 45 минут. После 45 минут занятий организовывается перерыв длительностью 10 минут для проветривания помещения и отдыха учащихся.

Форма обучения: очная.

1.2. Цель и задачи программы

Цель программы: развитие интеллектуальных и творческих способностей детей посредством начального технического конструирования и основ программирования; формирование личности учащегося, способного самостоятельно ставить учебные цели и проектировать пути их реализации.

Задачи:

Обучающие:

- •ознакомление с историей развития техники и современными достижениями;
- •дать первоначальные знания о конструкции роботизированных устройств;
- •научить приемам сборки и программирования робототизированных устройств;
- •обучить владению инструментами и приспособлениями, технической терминологией;
- •обучить умению строить простейшие настольные модели роботов.

Развивающие:

- •развивать у детей инженерное мышление, навыки конструирования и программирования;
 - •развивать познавательный интерес к техническому моделированию и конструированию;
 - •развивать мелкую моторику, любознательность и изобретательность;
- •развивать креативное мышление, пространственное воображение и конструкторские способности учащихся;
 - •формировать навыки проектного мышления, способность работать в команде.

Воспитательные:

- •воспитывать самостоятельность, аккуратность и внимательность в работе;
- •повышать мотивацию учащихся к изобретательству и созданию собственных роботизированных систем;
- •формировать у учащихся стремление к получению качественного законченного результата;
- •побуждать к участию в играх, конкурсах и состязаниях роботов в качестве закрепления изучаемого материала и в целях мотивации обучения.

Планируемые результаты программы *Предметные*:

- владение основными приемами конструирования роботов;
- умение разбираться в основных алгоритмических конструкциях и использовать их для построения алгоритмов;
- умение различать конструктивные особенности различных роботов, сооружений и механизмов:
- умение создавать действующие модели роботов, отвечающих потребностям конкретной задачи;
- способность самостоятельно решать технические задачи в процессе конструирования роботов.

Метапредметные:

- способность ориентироваться в своей системе знаний: отличать новое знание от известного:
- умение перерабатывать полученную информацию: делать выводы в результате совместной работы группы, сравнивать и группировать предметы и их образы;
 - навыки работы по предложенным инструкциям и самостоятельно;
- способность излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
 - умение определять и формировать цель деятельности на занятии с помощью педагога;
 - умение работать в группе и коллективе;
 - наличие аналитического, практического и логического мышления;
- умение работать над проектом индивидуально и в команде, эффективно распределять обязанности и время.

Личностные:

- устойчивый интерес к робототехнике, участие в конкурсах и состязаниях моделей;
- наличие самостоятельности и самоорганизации;
- -умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата;

- умение вести себя сдержанно и спокойно.

Занятия робототехникой должны помочь учащимся достичь такие результаты, как: сформированность познавательных интересов, интеллектуальных и творческих способностей; самостоятельность в приобретении новых знаний и практических умений; мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода; формирование ценностных отношений друг к другу, педагогу, авторам открытий и изобретений, результатам обучения.

1.3. Содержание программы Учебный план

	Учеоныи план						
No /	Наименование модулей	Количество часов			Форма контроля		
п/п		всего	теория	практ.			
1.	Вводное занятие. Инструктаж по Т/Б и правила поведения в кабинете. Входная диагностика. Формирование групп	2	2	0	Опрос. Тестирование.		
2.	Конструктор LEGO SPIKE Prime его аппаратное обеспечение. Устройство, назначение и сборка простейших механизмов. Совместная работа наставников и наставляемых в изучении конструктора	12	4	8	Игры. Педагогическое наблюдение. Выполнение заданий. Опрос. Тестирование.		
3.	Основы программирования. Знакомство с визуальной средой программирования Scratch для конструктора LEGO SPIKE Prime	16	8	8	Игры. Педагогическое наблюдение. Выполнение заданий. Опрос. Тестирование.		
4.	Составление программ в среде программирования Scratch для конструктора LEGO Education SPIKE Prime и их испытание. Совместная работа наставляемых в составлении программ для роботов.	32	8	24	Тестирование по пройденному материалу Игра. Соревнования. Педагогическое наблюдение. Выполнение заданий. Опрос. Тестирование.		
5.	Реализация аппаратной и программной части конструктора LEGO Education SPIKE Prime для решения практических задач. Оказание помощи в создание новых моделей и их	8	0	8	Тестирование. Выполнение заданий. Педагогическое наблюдение. Соревнования.		
6.	Итоговое занятие. Выполнение итоговой работы по программе Робототехника. Подведение итогов наставничества	2	2	0	Тестирование.		
итого:		72	24	48			

1. Вводное занятие.

Теория: Беседа о технике безопасной работы и поведении в кабинете. Вводный и первичный инструктаж на рабочем месте для обучающихся.

Цели и задачи курса. Рассказ о направлениях: научно-исследовательская деятельность, научно-техническое творчество, образовательная робототехника. Обзор конструкторов образовательной серии LEGO education. Просмотр видеоролика. Беседа: «История робототехники и её виды». Актуальность применения роботов. Конкурсы, состязания по робототехнике.

Практика: Правила работы с набором-конструктором LEGO Education SPIKE Prime. Формы и виды контроля: Входной контроль знаний на начало учебного года. Формирование групп «наставник-наставляемые».

2. <u>Конструктор LEGO SPIKE Prime его аппаратное обеспечение. Устройство, назначение и сборка простейших механизмов</u>

Теория: Планирование работы с конструктором. Знакомство с перечнем деталей, декоративных и соединительных элементов, электронных компонентов конструктора и систем передвижения. Наклейка номеров на основные элементы выданных конструкторов. Сортировка и хранение деталей конструктора в контейнерах набора. Ознакомление с примерными образцами изделий конструктора LEGO Education SPIKE Prime. Определение понятий: «машина», «механизм». Принципы действия простых механизмов. Рычаги. Виды рычагов. Использование шестерен. Виды зубчатых передач Виды ременных передач. Тележки. Одномоторная тележка. Полноприводная тележка. Тележка с автономным управлением. Тележка с изменением передаточного отношения. Проведение опытов с тележкой с изменением передаточного отношения.

Практика: Правила работы с набором-конструктором LEGO Education SPIKE Prime и программным обеспечением. Учимся собирать механизмы. Тестовые практические творческие задания.

3. <u>Основы программирования. Знакомство с визуальной средой</u> программирования Scratch для конструктора LEGO SPIKE Prime

Теория: Понятие «программа», «алгоритм». Понятие «среда программирования», «логические блоки». Условные обозначения, применяемые в блок-схемах. Показ написания простейшей программы для робота.

Практика: Запись алгоритмов на естественном языке. Графический способ записи алгоритмов - блок-схема. Запись различных видов алгоритмов с помощью блок-схем. Составление программ в визуальной среде программирования Scratch.

4. <u>Составление программ в среде программирования Scratch для базового робота LEGO Education SPIKE Primeu их испытание.</u>

Теория: Датчик цвета. Принцип работы. Датчик расстояния. Принцип работы. Технические характеристики датчика расстояния. Способы подключения. Датчик расстояния. Принцип работы. Технические характеристики датчика расстояния. Совместное применение датчика цвета и датчика расстояния для разных ситуаций. Практика: Сборка и программирование базового робота. Составление программы управления движением робота с помощью датчика цвета по черной линии. Составление программы движения робота с датчиком расстояния при обнаружении препятствий и преодоление препятствий. Использование в конструкции датчика расстояния. Совместное применение датчика цвета, датчика расстояния и датчика касания при движении по лабиринту. Соревнования в командах с применением различных датчиков.

5. <u>Реализация аппаратной и программной части конструктора LEGO</u> <u>Education SPIKE Prime для решения практических задач.</u>

Практика: Выполнение проекта «Суперпогрузчик». Командное создание модели, ее программирование для задач определяемых конкретными условиями. Испытание модели и ее презентация.

6. Итоговое занятие

Рефлексия полученных знаний. Подведение итогов выступления на конкурсах и соревнованиях.

1.4. Формы контроля и их периодичность

Педагогический мониторинг включает в себя: **входной контроль, текущий контроль,** и **итоговый контроль.**

Входной контроль проводится на первых занятиях с целью выявления образовательного и творческого уровня учащихся, их способностей. Он может быть в форме собеседования, тестирования.

Текущий контроль осуществляется регулярно в течение учебного года. Контроль теоретических знаний осуществляется с помощью педагогического наблюдения, тестов, опросов, дидактических игр, викторин.

Итприсовый контроль может проводиться в форме творческого задания, практического задания, контрольного занятия, творческого конструирования собственной модели и т.д.). Система контроля знаний и умений обучающихся представляется в виде учёта результатов по итогам выполнения заданий и посредством наблюдения, отслеживания динамики развития обучающегося. Практическая деятельность оценивается качеством выполнения работ обучающихся. По итогам контроля заполняются оценочные таблицы.

1.5. Календарный учебный график

Количество учебных недель – 36.

Количество учебных дней – 72.

Учебный период: сентябрь-май.

Календарный учебный график разрабатывается ежегодно и является составной частью рабочей программы. (Приложение N $\!\!\!$ 1)

Место проведения занятий: учебный кабинет.

2. Комплекс организационно-педагогических условий

2.1. Методическое обеспечение программы

Методика организации теоретических и практических занятий может быть представлена следующим образом:

- теоретический материал, объяснённый в форме беседы или метода «Интервью» с применением IT—технологий обучения;
- практическая апробация знаний, включающая в себе работу под руководством педагога по изучению и применению на практике различных инструментов программного обеспечения;
- практическая деятельность репродуктивного или творческого характера, выполняемая обучающимся самостоятельно.

На занятиях обучающиеся получат навыки и способы работы и организации информации. Это является актуальным в современном мире, где повсеместно используются ІТтехнологии. Проектирование собственных работ и самостоятельное определение своих действий, под контролем педагога, развивают самостоятельность и саморегуляцию учащегося.

Важным в курсе программы является постоянная работа с персональным компьютером, что развивает у обучающихся техническую грамотность, навык работы с современной техникой и воспитывает бережное отношение к техническим средствам обучения.

Формы работы на занятии

В зависимости от поставленной задачи (обучающей, развивающей, воспитательной), уровня подготовки воспитанников используются различные формы работы:

- 1. Занятия коллективные, индивидуально-групповые, межуровневые (занятия для воспитанников, освоивших или осваивающих начальные уровни программы, проводят воспитанники, освоившие более высокий уровень).
- 2. Индивидуальная работа детей, предполагающая самостоятельный поиск различных ресурсов для решения задач:
- учебно-методических (обучающие программы, учебные, методические пособия и т.д.);
 - материально-технических (электронные источники информации);
- социальных (консультации специалистов, общение со старшеклассниками, сверстниками, родителями).
 - 3. Участие в выставках, конкурсах, соревнованиях различного уровня.

Методы:

- •Объяснительно-иллюстративный предъявление информации различными способами (объяснение, рассказ, беседа, инструктаж, демонстрация, работа с технологическими картами и др.);
 - •Эвристический метод творческой деятельности (создание творческих моделей и т.д.)
- •Проблемный постановка проблемы и самостоятельный поиск её решения воспитанниками;
- •Программированный набор операций, которые необходимо выполнить в ходе выполнения практических работ (форма: компьютерный практикум, проектная деятельность);
- •Репродуктивный воспроизводство знаний и способов деятельности (форма: собирание моделей и конструкций по образцу, беседа, упражнения по аналогу),
 - •Частично-поисковый решение проблемных задач с помощью педагога;
 - •Поисковый самостоятельное решение проблем;
- •Метод проблемного изложения постановка проблемы педагогом, решение ее самим педагогом, соучастие обучающихся при решении.
- •Метод проектов технология организации образовательных ситуаций, в которых воспитанник ставит и решает собственные задачи, технология сопровождения самостоятельной деятельности воспитанника.

Выбор методов обучения осуществляется исходя из анализа уровня готовности учащихся к освоению содержания модуля, степени сложности материала, типа учебного занятия. На выбор методов обучения значительно влияет персональный состав группы, индивидуальные особенности, возможности и запросы детей.

2.2. Условия реализации программы

Материально-техническое обеспечение:

Столы для детей- 8 шт.

Стол преподавательский -1 шт.

Стулья - 12 шт.

Шкаф - 2 шт.

Доска -1 шт.

Оборудование:

- ноутбуки/ПК 4 шт;
- МФУ лазерный;
- доступ к сети Интернет;

• наборы: LEGO Education SPIKE Prime - 4 шт

Информационно обеспечение:

- LEGO Education SPIKE Prime комплект учебных проектов (методическое пособие);
- Информационное обеспечение:
- ΠΟ Microsoft Office 10;
- ΠΟ Microsoft Office 7;
- ΠΟ Microsoft Windows 7;
- ΠΟ Microsoft Windows 10;
- Книга для педагога.

Кадровое обеспечение:

педагог дополнительного образования, владеющий навыками программирования и робототехники.

2.3. Оценочные материалы

Предметные результаты по программе оцениваются по результатам тестирования по пройденному материалу, по итогам игры, соревнования, опроса. В процессе работы над проектом применяется метод педагогического наблюдения, опрос. (Приложение 2.) Для отслеживания предметных, метапредметных и личностных результатов освоения программы применяются критерии оценки по уровням и заполняется сетка категорий наблюдения.

Оценочный лист результатов предварительного, промежуточного и итогового контроля обучающихся.

Срок проведения: декабрь, май.

Цель: оценка роста качества знаний и практического их применения за период обучения.

Форма проведения: практическое задание, контрольное занятие, тестирование.

Содержание контроля.

Сравнительный анализ качества выполненных работ начала, середины и конца учебного года (выявление уровня знаний и применения их на практике).

Уровень оценки: уровень (высокий, средний, низкий) (Приложение 2).

Список литературы

Для педагога:

Белиовский Н.А. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход./ Н.А. Белиовский, Л.Г. Белиовская.

– М.: Изд-во Ассоциации с вузов, 2015.

Вязовов С.М. Соревновательная робототехника: приемы программирования в среде EV3 / С.М. Вязовов, О.Ю. Калягина, К.А.Слезин.

– M.: 2013.

Зайцева Н.Н. Конструируем роботов на lego. Человек – всему мера? / Н.Н. Зайцева. – М.: Изд-во Лаборатория знаний,2014.

Овсяницкая Л.Ю. Алгоритмы и программы движения по линии робота LegoMindstorms EV3. – М.: Изд-во: Перо,2015.

Овсяницкая. Л.Ю. Курс программирования робота LegoMindstorms EV3 в среде EV3: основные подходы, практические примеры, секреты мастерства / Д.Н. Овсяницкий, А.Д. Овсяницкий. – Челябинск.: ИП МякотинИ.В.,2014.

Филиппов С. А. Уроки робототехники. Конструкция. Движение. – М.: Управление.2017.

Для учащихся:

Овсяницкая Л.Ю. Алгоритмы и программы движения по линии робота LegoMindstorms EV3. – М.: Изд-во: Перо,2015.

Овсяницкая. Л.Ю. Курс программирования робота LegoMindstorms EV3 в среде EV3: основные подходы, практические примеры, секреты мастерства / Д.Н. Овсяницкий, А.Д. Овсяницкий. – Челябинск.: ИП МякотинИ.В.,2014.

Автоматизированные устройства. ПервоРобот. Книга для учителя. LEGOGroup, перевод ИНТ, 2012. - 134c.

Барсуков А. Кто есть кто в робототехнике. - М., 2005. - 125 с.курс / Под ред. Н.В. Макаровой. СПб.: Питер, 2000.

Леонтьев В.П. Новейшая энциклопедия ПК. - М., ОЛСМ-ПРЕСС, 2003.

Макаров И.М., Толчеев Ю.И. Робототехника. История и перспективы. - М., 2003. - 349с. Наука. Энциклопедия. - М., «РОСМЕН», 2000. - 125с.

Образовательная робототехника «Обзор решений 2014 года». Компания ITS технический партнер программы поддержки молодых программистов и молодежных IT-проектов. - ITS-robot, 2014.

Попов Е.П., Письменный Г.В. Основы робототехники: Введение в специальность: Учеб. Для вузов по спец. «Робототехнические системы и комплексы» - М.: высш. Шк., 2004. - 224 с., ил. Рыкова Е.А. Lego-Лаборатория (LegoControlLab). Учебно-методическое пособие. - СПб, 2000. - 59 с.

Для учащихся и родителей:

Крайнев А.Ф. Первое путешествие в царство машин. - М., 2007г. - 173с.

Чехлова А. В., Якушкин П. А. «Конструкторы LEGO DAKTA в курсе информационных технологий. Введение в робототехнику». - М.: ИНТ, 2001 - 76с.

Филиппов С.А. Робототехника для детей и родителей - СПб.: Наука, 2010. - 263 с., ил. ШахинпурМ. Курс робототехники. Перевод с англ. - М.: Мир, 2001. - 527 с., ил.

Интернет-ресурсы

http://www.membrana.ru/ - Люди. Идеи. Технологии.

http://www.prorobot.ru/ - Роботы и робототехника

http://myrobot.ru/ - Роботы. Робототехника. Микроконтроллеры.

http://www.int-edu.ru/logo/products.html - ИНТ. Программные продукты Лого.

http://www.int-edu.ru/lego/catalog/techno.htm - ИНТ. Наборы LEGO DACTA для образовательной области "Технология".

Федеральный портал «Российское образование». http://www.edu.ru.

Международная федерация образования. http://www.mfo-rus.org.

Образование: национальный проект.

http://www.rost.ru/proiects/education/education main.shtml

ГОУ Центр развития системы дополнительного образования детей РФ.

http://www.dod.miem.edu.ru.

Российское школьное образование. http://www.school.edu.ru

Портал «Дополнительное образование детей». http://vidod.edu.ru

Календарный учебный график дополнительной общеобразовательной общеразвивающей программы «РОБОТОТЕХНИКА»

№ п/п	Дата проведения занятия	роведения Наименование разделов и тем занятий		Формы организации занятий	Формы контроля
		1. Вводное занятие	2		
1		Инструктаж по ОТ и ТБ. Входная диагностика. Что такое робототехника. Исторические сведения. Цели и задачи программы.	2	Лекция. Видеофильм	Тестирование. Опрос.
		2. Конструктор LEGO SPIKE Prime его аппаратное обеспечение. Устройство, назначение и сборка простейших механизмов	12		
2		Знакомство с деталями конструктора. Нумерование деталей конструктора и размещение по лоткам.	2	Практическая работа	Игра «Покажи деталь»
3		Обзор модуля Smarthub. Подключение датчиков касания, цвета, расстояния, к различным портам	2	Беседа. Видеофильм	Педагогическое наблюдение Выполнение заданий
4		Обзор сервомоторов, их характеристика. Основные показатели (обороты в минуту, крутящий момент, точность). Устройство, режимы работы.	2	Беседа. Видеофильм	Педагогическое наблюдение
5		Изучение зубчатых передач. Изучение рычажных механизмов. Сборка моделей с использованием зубчатых передач, рычагов и манипуляторов	2	Беседа, демонстрация	Опрос.Педагогическое наблюдение
6		Создание полноприводной тележки.	2	Практическая работа	Тестирование Тест № 1 Опрос
7		Соревнование между командами на быстроту сборки и соответствие собранной модели схемы.	2	Работа в командах	Педагогическое наблюдение
		3. Основы программирования. Знакомство с визуальной средой программирования Scratch для конструктора LEGO SPIKE Prime	16		

	,			
8	Основы программированияввизуальной средеScratch для LegoSpikePrime. Понятие алгоритма.	2	Лекция, видеофильм,	Опрос
9	Виды алгоритмов. Составление простых алгоритмов. Запись алгоритмов на естественном языке. Правила записи алгоритмов	2	Лекция, видеофильм	Опрос
10	Запись алгоритмов на естественном языке.	2	Беседа, практическая работа «Написание собственного алгоритма»	Педагогическое наблюдение
11	Графический способ записи алгоритмов - блок-схема. Условные обозначения, применяемые в блок-схемах.	2	Лекция, видеофильм	Опрос
12	Запись различных видов алгоритмов с помощью блок-схем.	2	Лекция, видеофильм	Опрос
13	Понятие «программа». Ознакомление с визуальной средой программирования Scratch. Интерфейс. Основные блоки	2	Лекция	Опрос
14	Составление программ в среде программирования Scratch	2	Беседа, практическая работа	Опрос
15	Составление программ в среде программирования Scratch.	2	Беседа, практическая работа «Составление программы с помощью блоков»	Педагогическое наблюдение
	4. Составление программ в среде программирования Scratch для базового робота конструктора LEGOSPIKEPrimeu их испытание.	32		
16	Сборка базового робота из конструктора LEGOSPIKEPrime.	2	Лекция, видеофильм	Педагогическое наблюдение.
17	Датчик цвета. Принцип работы. Способы подключения. Определение чувствительности датчика цвета. Зависимость от различных факторов.	2	Беседа, практическая работа	Опрос
18	Составление программы управления движением робота с помощью датчика цвета по черной линии. Загрузка программы в хаб	2	Создание и описание модели с помощью блок- схем	Педагогическое наблюдение. Опрос
19	Движение базового робота по черной линии. Тестирование программы.	2	Практическая работа	Педагогическое наблюдение. Опрос

20	Соревнования в команде на время прохождения роботом полигона.	2	Игра "Весёлые старты".	Соревнования роботов
21	Датчик расстояния. Принцип работы. Технические характеристики датчика расстояния. Способы подключения.	2	Лекция, видеофильм Практическая работа	Педагогическое наблюдение Опрос.
22	Составление программы движения робота с датчиком расстояния при обнаружении препятствий. Загрузка программы в робот.	2	Составление программы в среде программирования Анализ программы	Педагогическое наблюдение
23	Изучение возможностей действий робота с датчиком расстояния.	2	Беседа, практическая работа	Педагогическое наблюдение
24	Изучение возможностей совместного применения датчика цвета и датчика расстояния	2	Беседа, демонстрация	Опрос
25	Составление программы совместного применения датчика цвета и датчика расстояния для удаления препятствий с пути движения робота.	2	Составление программы в среде программирования Анализ программы	Выполнение заданий. Опрос.
26	Подготовка к участию в соревновании по выталкиванию кеглей с площади полигона	2	Беседа, демонстрация	Тестирование. Тест №2
27	Соревнования в командах по скорости выталкивания кеглей с площади полигона «Кегельринг»	2	Практическая работа в команде	Соревнование. Педагогическое наблюдение
28	Датчик касания. Принцип работы. Технические характеристики датчика касания. Способы подключения.	2	Беседа, демонстрация	Педагогическое наблюдение выполнение заданий
29	Составление программы движения робота с датчиком касания при обнаружении препятствий. Робот –жук. Загрузка программы в робот.	2	Составление программы в среде программирования. Анализ программы	Педагогическое наблюдение выполнение заданий
30	Составление программы совместного применения датчика цвета, датчика расстояния и датчика касания для робота-сумоиста на полигоне.	2	Составление программы в среде программирования Анализ программы	Педагогическое наблюдение
31	Соревнование в группах по сумо среди роботов	2	Практическая работа в команде.	Соревнование.
	5.Реализация аппаратной и программной части конструктора LEGOSPIKEPrime для решения	8		

	практических задач.			
32	Выполнение проекта «Супер погрузчик»	2	Самостоятельная работа в	Педагогическое наблюдение
	Конструирование устройства управления для захват	a	команде	Выполнение заданий
	предметов.			
33	Выполнение проекта «Супер погрузчик»	2	Самостоятельная работа в	Педагогическое наблюдение
	Конструирование устройства управления для захват	a	команде	Выполнение заданий.
	предметов. Захват предметов одинаковой массы, но			
	разного размера.			
34	Выполнение проекта «Супер погрузчик»	2	Самостоятельная работа в	
	Конструирование устройства управления для захват	a	команде	Педагогическое
	предметов. Захват предметов одинакового размера,			наблюдение. Выполнение
	но разной массы.			заданий
35		2	Демонстрация	Соревнование.
	Презентация моделей		предоставленных	
			механизмов упражнения	
	6.Итоговое занятие	2		
36	Итоговое тестирование. Выполнение итоговой	2	Самостоятельная работа	Тестирование. Тест№3
	работы по программе «Робототехника		_	(Приложение 2)
	Итого:	72		

Оценочные материалы

Критерии оценивания обучающихся

№ п\п	Параметры оценки	Критерии оценки				
		Высокий уровень	Средний уровень	Низкий уровень		
1.	Технология	Соблюдение всех технологических приемов	Допущены единичные нарушения технологии	Несоблюдение технологии		
2.	Воплощение технического образа	Технический образ воплощен в работе	Неубедительное воплощение технического образа в работе	Отсутствие в работе творческого замысла		
3.	Личностный рост (на основе наблюдений педагога)	Самостоятельность в работе, дисциплинированно сть, аккуратность, умение работать в коллективе, тщательность проработки изделий, развитие фантазии и творческого потен - циала	неполная самостоятельность в работе	Неусидчивость, неумение работать в коллективе и самостоятельно		
4.	Личные достижения (участие в различны конкурсах, выставка соревнованиях)	Участие	Не учитывается	Не учитывается		

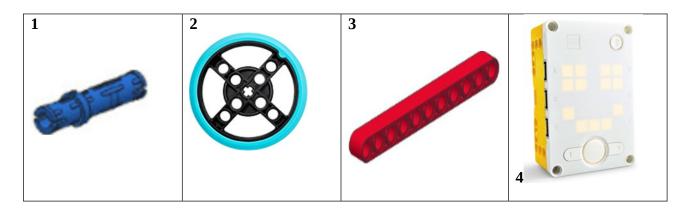
№ п\п	ФИО	Сложность	Соответствие	Презентация	Степень	Кол-во
	обучающегося	продукта (по	продукта	продукта.	увлеченности	вопросов и
		шкале от	поставленной	Степень	процессом и	затруднений
		0 до 5 баллов)	задаче от 0 до	владения	стремления к	за одно
			5 баллов	специальными	оригинально-	занятие
				терминами	сти от 0 до 5	
				от 0 до 5	баллов	
1						
2						

Показателем эффективности реализации наставничества являются повышение мотивации наставляемого в результате работы наставника, выявленные методом опроса, результаты участия в конкурсах разного уровня.

Опрос для наставляемого

1. У меня появилось желание чаще Часто Средне Редко Никогда

принимать участие в олимпиадах и конкурсах, мероприятиях.		
2. Мне стало легче готовиться к олимпиадам и конкурсам		
3. Я хочу принять участие в олимпиадах и конкурсах, мероприятиях, в которых ранее не принимал участие		
4. Я понимаю, зачем мне нужно участвовать в олимпиадах, конкурсах, мероприятиях.		


Тест № 1.

- 1. Какие датчики входят в базовый набор LEGO SpikePrime?(указать все имеющиеся)
 - а) Датчик звука б) Датчик расстояния в) Датчик цвета г) Датчик силы

2. Установите соответствие

- а)Датчик силы (касания). б)Ультразвуковой датчик. с)Датчик цвета.
- 3. Устройством, позволяющим роботу определять расстояние до объекта и реагировать на движение является...
 - а). Датчик силы (касания)
 - б). Датчик расстояния
 - в). Датчик цвета
 - г). Датчик звука
- 3. Сервомотор это...
 - а).устройство для определения цвета
 - б).устройство для проигрывания звука
 - в).устройство для движения робота
 - г).устройство для хранения данных
- 4. Какой разъем есть у робота для его подключения к компьютеру по кабелю?
- a) USB Type A. б) MiniUSBB. в) USB Type. г) Micro USB.
- 5. Сколько сегментов у экран Хаба?
- а). 10. б). 15. в). 20. г.). 25
- 6. Как можно подключить хаб к компьютеру? (Выберите все подходящие варианты)
- а). Wi-Fi.б). Bluetooth.в). ИК-порт. г). Провод
- 7. Установите соответствие

а). Хаб. в). Штифт. в). Колесо. г). Балка.

8.На каких операционных системах можно запустить среду разработки LEGO Spike Prime? Выберите все подходящие варианты

- a). MacOS.б).Windows. в). Android.г). Linux.
- **9.** Какое количество цветов определяет датчик цвета конструктора LEGO SPIKE Prime? а). 8. б).6. в).7. г).10.
- 10. Совокупность механизмов, заменяющих человека или животное в определенной области; используется она главным образом для автоматизации труда. Укажите соответствующий данному определению термин:
 - а). Механизм
 - б). Машина
 - в).Робот
 - г).Андроид
- 11. Какой древнегреческий бог создавал человекоподобных механических слуг?
 - а. Зевс
 - б. Арес
 - в. Гефест
 - г. Аполлон
- 12. Что означает слово кибернетика?
 - а) Искусство рисовать
 - б) Искусство управлять
 - в) Искусство создавать

Тест № 2.

1). Робототехника - это ...

- а) раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними.
- б) прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства.
- в) наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений.

2). Датчик цвета – это

а) это аналоговый датчик, который может определять, когда красная кнопка датчика нажата, а когда отпущена.

- б) это цифровой датчик, который обнаруживает вращательное движение по одной оси.
- в) это цифровой датчик, который может обнаруживать инфракрасный цвет, отраженный от сплошных объектов.
- г) это цифровой датчик, который может определять цвет или яркость света.

3).Какие элементы обеспечивают работу датчика цвета? (Выберите все подходящие варианты)

- а). Светодиод.
- б). Лампа накаливания.
- в). Фотоприемник.
- г). Сервомотор.

4. Какому цвету соответствует значение датчика цвета в режиме определения яркости отраженного света, близкое к 100?

- а). Серый.
- б). Зеленый.
- в). Белый.
- г).Красный.

5). Датчик касания подключается к модулю LEGO SPIKE Prime через порт....

- a) ABCD
- б) CD
- в) EF
- г) Любой.

6) Что означает в робототехнике слово «терминатор»?

- а) имя робота из одноименного фильма
- б) границу между светлой и темной частью игрового поля
- в) поглотитель энергии (обычно резистор) на конце длинной линии, сопротивление которого равно волновому сопротивлению линии

7) Какими способами невозможно подключить хаб к компьютеру?

- а) USB кабель
- б) WI FI
- в) Bluetooth
- г) IrDA (ИК порт)

8) Как называется техническое устройство, выполняющее механические движения для преобразования энергии, материалов и информации?

- а) машина
- б) механизм
- в) узел
- г) деталь

9) Укажите, какое из перечисленных устройств, подключенных к Хабу, является устройством ввода информации:

- а) электродвигатель
- б) датчик освещенности
- в) кабель с microUSB

10) Укажите верное (ые) высказывание (я)

- а) Блок цикл используется для повторения серии действий
- б) Использование блока случайной величины для перемещения приводной платформой со случайно выбранной скоростью и случайностью и в случайно выбранном направлении
- в) Блок операции с данными текст, служит для отображения показателей датчиков в режиме реального времени

11) Устройством, позволяющим роботу определить расстояние до объекта и реагировать на движение, является...

- а) Ультразвуковой датчик
- б) Датчик звука
- в) Датчик цвета
- г) Гироскопический датчик

12) для чего служит штифт?

- а) для крепления балок
- б) для крепления оси
- в) для крепления мотора

Тест № 3

1). Для обмена данными между хабом и компьютером используется...

WiMAX

РСІ порт

WI-FI

USB порт

2). Верным является утверждение...

- a).ХабSpikePrimeимеет 2 выходных и 4 входных порта
- б).ХабSpikePrimeимеет 4 входных и 2 выходных порта
- в).ХабSpikePrimеимеет бравнозначных порта
- г).ХабSpikePrimeимеет 3 выходных и 3 входных порта

3). Устройством, позволяющим роботу определить расстояние до объекта и реагировать на движение, является...

Ультразвуковой датчик

Датчик звука

Датчик цвета

Гироскоп

4). Сервомотор – это...

устройство для определения цвета устройство для движения робота устройство для проигрывания звука

устройство для хранения данных

5). К основным типам деталей LEGOSPIKEPrime относятся...

шестеренки, болты, шурупы, балки балки, штифты, втулки, фиксаторы балки, втулки, шурупы, гайки штифты, шурупы, болты, пластины

6).Для подключения датчика к хабу SpikePrime требуется подсоединить один конец кабеля к датчику, а другой...

- а).к одному из входных (Е,F) портов хаба
- б).оставить свободным
- в).к аккумулятору
- г).к любому из портов хаба

7). Для подключения сервомотора к хабу SpikePrime требуется подсоединить один конец кабеля к сервомотору, а другой...

а).к одному из входных (Е,F) портов хаба

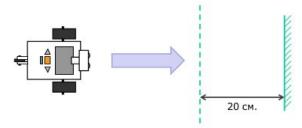
- б).оставить свободным
- в).к аккумулятору
- г).к любому из портов хаба
- 8). Наибольшее расстояние, на котором ультразвуковой датчик может обнаружить объект...
 - а).50 см.
 - б).100 см.
 - в).3 м.
 - г).200 см.
- 9). Для чего служит хаб SpikePrime?
 - а). Служит центром сбора информации
 - б). Служит центром управления и энергетической станцией для робота
 - г). Служит центром обработки информации
 - 10). Какие волны используются в датчике расстояния?
 - а).ультракороткие
 - б).световые
 - в).ультразвуковые
 - г).инфракрасные
 - 11).Как обозначаются порты вывода на модуле?
 - a). 1,2,3,4,5,6.
 - б). А,В,С,1,2,3.
 - в). A1,B2,C3,D4,E5,F6.
 - г). A,B,C,D,E,F.
 - 12). Как обозначаются порты ввода на модуле?
 - a). 1,2,3,4,5,6.
 - б). А,В,С,1,2,3.
 - в). A1,B2,C3,D4,E5,F6.
 - г). A,B,C,D,E,F.
- **13. Какие языки программирования поддерживает среда разработки LEGO SpikePrime?** (Выберите все подходящие варианты)
 - a). Pascal
 - б). Pvthon
 - B). C/C++
 - г). Scratch
- 14. Напишите 2 программы, выбранные случайным образом:
- **1. Робот обнаруживает препятствие.**На роботе датчик касания смотрит вперед. Робот начинает двигаться. Как только обнаружится касание с препятствием, робот должен остановиться.
 - Из скольких блоков состоит ваша программа?
 - Остановился робот сразу после касания или еще пытался продолжить двигаться?
 - За счет какого действия в программе нужно остановить робота, сразу после обнаружения нажатия?
- **2.Простейший выход из лабиринта.**Напишите программу, чтобы робот выбрался из лабиринта вот такой конфигурации:

- Что нужно сделать роботу после касания со стенкой?
- В какую сторону должен крутиться мотор, чтобы робот мог выполнить разворот беспрепятственно?
- Сколько раз робот должен сделать одинаковые действия?

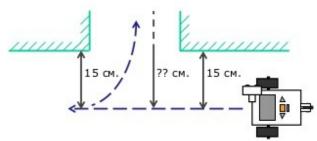
3. Ожидание событий от двух датчиков.

Установите на роботе два датчика касания – один смотрит вперед, другой – назад. Напишите программу, чтобы робот менял направление движения на противоположное при

столкновении с препятствием, при этом:

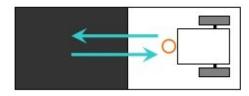

- При движении вперед опрашивается передний датчик
- При движении назад опрашивает задний датчик

4. Управление звуком.


- Робот должен начать двигаться после громкого хлопка.
- После еще одного хлопка робот должен повернуть на 180 градусов и снова ехать вперед
- Использовать цикл, чтобы повторять действия из шага 2.

5. Робот обнаруживает препятствие.

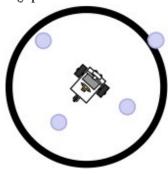
Датчик расстояния на роботе смотрит вперед. Робот двигается до тех пор, пока не появится препятствие ближе, чем на 20 см.


6.Парковка. Датчик расстояния смотрит в сторону. Робот должен найти пространство для парковки между двумя «автомобилями» и выполнить заезд в обнаруженное пространство.

7. Черно-белое движение.

Пусть робот доедет до темной области, а затем съедет обратно на светлую.

Добавьте цикл в программу – пусть робот перемещается вперед-назад попеременно, то на темную, то на светлую область.


8. Движение вдоль линии.

Пусть робот перемещается попеременно, то на темную, то на светлую область. Движение должно выполняться поочередно то одним, то другим колесом. Используйте линии разной толщины.

9.Робот-уборщик.

Роботу понадобятся датчик расстояния и цвета. Задача робота обнаружить внутри ринга весь мусор и вытолкнуть их за черную линию, ограничивающую ринг. Сам робот не долен выезжать за границу ринга.

10. Красный цвет – дороги нет.

Робот-тележка должен пересекать черные полоски – дорожки, при пересечении говорить «Black». Как только ему встретиться красная дорожка – он должен остановиться. Задание нужно выполнить с использованием вложенных условий.

